Now that we have January - March 2013 circuit-level usage values, I thought I’d go back and revisit my original 2012 heat estimate using a different method.

I had estimated January - March 2012 heat energy based on a linear regression analysis of our April - December heat values. There are a number of problems with this approach. Mainly that heat pumps use more energy the colder it gets outside, and secondly the amount of passive heat we gain from the sun can significantly reduce the amount of energy required for heat.

This time I used a less formulaic approach to estimate heat energy usage. I simply calculated the kWh/HDD per month for 2012 and 2013, and compared the values.

First lets look at the first 3 months of 2013. We recorded 3,239 HDD, a 20% increase from 2012 to 2013. We used 746 kWh for those 3 months. If we divide 746 kWh by 3,239 HDD we get 0.230 kWh per HDD.

Now let’s try the same for the first 3 months of 2012. We recorded 2,107 HDD and I estimated 327 kWh for heat energy. 327 / 2,107 = 0.121 kWh per HDD. That is a 128% difference from 2013. Something is clearly off.

Since 2013 was colder and less sunny, I would expect our 2013 efficiency to be less because heat pumps become less efficient at lower temperatures. So I manually adjusted the 2012 kWh values so that the kWh/HDD percentage was similar to the 2013 values, then I lowered it a bit to take into account the warmer temperatures and increase sun in 2012. Did I mention this wasn’t very scientific?

What we get is closer to 620 kWh for heat energy for the first 3 months of 2012. This is roughly a 90% increase from my earlier estimate. It also means that a 20% increase in colder weather roughly equals 20% more heat energy usage.

Q1 2012-2013 heat energy comparison
Q1 2012-2013 heat energy comparison

Looking at Q1 performance again, that means out of the 445 kWh increase in 2013, 65% of that increase was due to heat energy, 33% was water heating and everything else was 2%. That sounds a little more realistic.